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Importance of Fluorinated compounds
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Approximately 20% of commercial pharmaceuticals and 30% of agrochemicals contain
at least one fluorine atom.

Important role in drug design and diagnostics as F-18 have the most ideal half life 109.8
minutes.

Enhance membrane permeability and increase bioavailability of Drugs.
Stronger target binding ability and slower oxidative metabolism.

The widespread use of [*8F]fluoro-2-deoxyglucose, [{F]JFDG in PET has an impact in
Oncology.
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I5F-fluorodeoxyglucose (*F-FDG) ['®F]fluoro-dihydrotestosterone
Radiotracer for imaging prostate cancer
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Gefitinib
Oral epidermal growth factor receptor (EGFR)
used for certain breast, lung and other cancers treatment
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Vandetanib
Anti-cancer drug used for the treatment of certain
tumours of the thyroid gland.
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Lapatinib Capecitabine

Orally active drug for breast cancer and other solid tumours Chemotherapy medication used to treat breast cancer,
gastric cancer and colorectal cancer
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Rosuvastatin Metofluthrin
Used to prevent cardiovascular disease in those at Used as an insect repellent

high risk and treat abnormal lipids




Fluorinating Reagents

Nucleophilic fluorinating reagents:
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Electrophilic fluorinating reagents:
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Deoxy-fluorinating reagent :
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PhenoFlour
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',: /@
2BF,- oNsg

N-fluoropyridinium triflate = SELECTFLUOR N-fluorobenzenesulfonimide(NFSI)
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Fluorination by PhenoFlour
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PhenoFlour™ ;
Intermediate observed upon treatment

of 4-methoxyphenol with PhenoFluor,
with hydrogen-bonding interaction observed

“10 K — = Predictable and selective ’ via X-ray crystallography and 1H NMR
H deoxyfluorination \\ spectroscopy /
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Disadvantages of PhenoFlour
*  Not suitable for large-scale use due to the reagent’s mass, catalytic turnover should be conceptually possible.

*  PhenoFluor provides for a practical synthesis of aryl fluorides, but is currently applicable only to substrates that contain the requisite

phenol functionality.
So, The development of a catalytic reagent with reactivity analogous to that of PhenoFluor would be a major advance !!

Pingping Tang et al. J. Am. Chem. Soc. 2011, 133, 30, 11482-11484 F. Sladojevich et al. . Am. Chem. Soc. 2013, 135, 7, 2470-2473 5
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H (1/— ] Pd-mediated electrophilic fluorination of arenes
o~ BF3K . Well defined C-F reductive elimination from Pd(IV) fluoride A
R + [Pd"(terpy),]**
+ S
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featuring a hemilabile pyridyl-sulfonamide ligand to promote

|.= transfer C
reductive elimination via a five-coordinate transition state.

Pd'"(terpy),]**
[ (C PY)al Limitations :
e N BFsK | > The reaction include the ; oN F
BF, A‘@ R P inability to fluorinate heterocycles E0
[.NJ » The formation of constitutional isomers X
for some electron-poor substrates o)
63 % 96%

Ritter et. al. J. Am. Chem. Soc. 2013, 135, 14012-14015. Ritter et. al. Angew. Chem. Int. Ed. 2008, 47, 5993-5996



Palladium-catal

yzed fluorination
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Fluoride capture Fluorine transfer
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18-crown-6 = /N\N/ N/ Acetone,
N—| o
KHCO3 _ 'il 85 C
Acetone X 10 mins
23 °C. 10 mins Electrophilic fluorinating agent

Proposed mechanism for the fluorine transfer from Pd(IV)-F B to Pd(IV)-aryl A
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» Two step procedure
» Very fast intermediate

Pd(IV)-F formation

» Unusual SET/fluoride transfer/

SET mechanism in Fluorine
transfer

—— Ar-F

18R fluorodeoxyestrone
33% + 7% RCY(n=8)

Eunsung Lee et al. Science 2011, 334, 639-642
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(m) Ni-mediated fluorination

hCR .‘—ﬂboﬁ‘\v“' One-step Ni-mediated C-8F bond formation using aqueous ‘8F and oxidant

» one-pot method
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» Fast procedure
2+

MeO = N OMe
be oF \@ O/ After less than 1 min after addition, the
S N\I/N > 20Tf . . . ’

N Nu——N\ p 18-crown-6 fluorination reactions were analyzed by radioTLC and
A, MeCN, A @ HPLC for radiochemical yield and product identity
R 23°C, <1 min o)
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Synthesis of Ni(ll) Aryl Complexes
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Br MeyN_ NMe; N ;
1 equiv. TMEDA Ni Ag O NO,
1equiv. Ni(COD), ~ N

R N

toluene R 2 equiv. pyridine
23°C, 6 hr PhMe/CH5;CN
23 °C, 1min
\ _O
57 NO, K/OBu NO,

N o
| + Ni(OAc)y(H,0)y ————— 3 N/S\go
SN Pyridine, 23 °C O ’\ll
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O,N |
N 18
N/S\\ F 18F .
I -Storable 18 fluorodeoxyestrone ["°F] 5-fluorouracil
. IN—Nl—— -Stable to Silica 58% + 6% RCY(n=6)

-Stable to water

Successful for the synthesis of

» Electron-rich

» Electron-poor

» Ortho-, meta-, and para-substituted

_O/ “OR NO, > Densely functionalized aryl fluorides
' > Alkenyl fluorides

NS0
Pyridine, 70 °C | o . . 3
N N__N,_N: > s+ Tertiary amines are currently not

tolerated, presumably due to the
unproductive reaction of oxidant

Ritter et al. J. Am. Chem. Soc. 2012, 134, 17456-17458

Hoover et al. Organometallics, 35, 1008-1014 8



Manganese porphyrin—catalyzed selective C-H fluorinations

Me o Me
Mn(TMP)CI (8 mol%) Me Me 0o
AgF (3 equiv.) TBAF (0.3 equiv.)
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PhlO (8 equiv.)

H I:| F 300,  a/p=45 23% o/B=6.2
5o0-androstan-17-one - Selective A ring fluorination Mn(TMP)CI
» Ultra-dry conditions are not required A X0 X B
» C-H bond cleavage is the rate-limiting step in )—& o xs-approach
the reaction( from KIE H
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0 R-H
pt=5% (==K
F 0 \ 7/
42% o/p=3.1 OAc OH L
16% C3-fluoride ; o/p=7.8 57%
A. Posited catalytic cycle for
» Fluoride binding to separately prepared F Enz"ﬁzgzzzzz;p:‘g;:;::aIyzed
Mn'V(0)(TMP) was indicated by an ultraviolet 5 Inferred st lectroni 'f
. . nferred stereoelectronics for
(UV) spectral shift (423 to 427 nm) ALOH AgF H abstraction - bent i* approach

Wei Liu et al. Science, 2012, 337, 1322 9



TBADT-catalyzed fluorination of Bornyl acetate O'\)C\)'/ 4X
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TBADT,MeCN /?f'vifo 3
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OAc Wavelength= 365nm \o-w\:g/ ;
16hr R L
Bornyl acetate : 0
; TBADT
Halperin et. al. Angew. Chem. Int. Ed. 2014, 53, 1-5 i X=BuN'(3) |

Few more Example of C-H fluorination

C-H fluorination of estrone derivative (
0 0O
Pd(dba), (5-10 mol%)
Ny NFSI N Sy P
=
Z >0 EtOAc, 100° C “ o
60%
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Shao-Jie Lou et al. ACS Catalysis, 2015, 5(5), 2846-2849.

Iron catalyzed fluorination F

R Fe(acac)2
—
Selectflour

MeCN, rt
Lectka et.al. Org. Let., 2013, 15, 1722.

J

Palladium catalyzed quorlnatlon

Pd(OAc),
PhI(OPlV)z AgF
R' CH,Cl,,60°C

Sanford et. al. Org. Lett. 2012, 4094.
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Thank You

everyone....




